
CIWS CIWS – Customizable Instrument Workstation Software system
for telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: i

All information contained in this document is property of INAF. All rights reserved.

ProcessorLib 1.4.1 Programmer’s guide

R.I. CIWS-IASFBO-TN-012

Custodian: Name: Andrea Bulgarelli Signature: Date:

Prepared by: Name: Andrea Bulgarelli Signature: Date:

Reviewed by: Name: Signature: Date:

Approved by: Name: Signature: Date:

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: ii

All information contained in this document is property of INAF. All rights reserved.

AUTHOR LIST

Andrea Bulgarelli
INAF/IASF Bologna,
Italy

DISTRIBUTION LIST

CIWS e-mail list ciws@iasfbo.inaf.it

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: iii

All information contained in this document is property of INAF. All rights reserved.

DOCUMENT HISTORY

Version Date Modification

d0.1 31 March 2014 First draft

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 1

All information contained in this document is property of INAF. All rights reserved.

TABLE OF CONTENTS

1. INTRODUCTION .. 2

ACRONYMS .. 3

REFERENCE DOCUMENTS .. 4

1. DESIGN MODEL .. 5

1.1 OVERVIEW ... 5
1.2 MONITOR HIERACHY ... 6
1.3 PROVIDER HIERACHY ... 7
1.4 OUTPUTFILEPROCESSOR HIERARCHY .. 8

2. MEASUREMENT AND MEASUREMENT SESSION .. 10

2.1 MEASUREMENT SESSION ... 10
2.2 MEASUREMENT .. 11

3. HOW TO WORK PROCESSORLIB... 15

3.1 INPUT INTERFACE .. 15
3.2 PROVIDER ... 16

3.2.1.1 PACKET .. 16
3.2.2 Run id ... 16
3.2.3 Start time and stop time ... 17
3.2.4 Output... 17

3.3 PROCESSOR ... 17

4. BUILDING A PROCESSOR ... 19

4.1 .PROCESSOR .. 19
4.1.1 DISCoS Mode .. 19
4.1.2 Test mode .. 21

5. AN EXAMPLE OF PROCESSOR .. 24

5.1 GRIDCALDFETE PROCESSOR .. 24
5.2 MAIN ... 24

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 2

All information contained in this document is property of INAF. All rights reserved.

1. Introduction

The diagrams and the terms presented in this document are conformed with the UML-OMG 1.4
standard [2]. The Unified Modeling Language (UML) is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a system's blueprints, including conceptual things such as
business processes and system functions as well as concrete things such as programming
language statements, database schemas, and reusable software components. The UML represents
the culmination of best practices in practical object-oriented modeling.

For the description of the architecture are used the implementation diagrams. This diagrams show
aspects of physical implementation, including the structure of components and the run-time
deployment system. They come in two forms:

 component diagrams show the structure of components, including the classifiers that specify

them and the artifacts that implement them;

 deployment diagrams show the structure of the nodes on which the components are deployed.

For a logical overview of the software architecture are used the package diagram (a package is a
grouping of element as component, code, etc.) and the class diagrams. For a description of the
sequence of operations the activity diagrams are used.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 3

All information contained in this document is property of INAF. All rights reserved.

ACRONYMS

AD Applicable Document

AIV Assembly, Integration and Verification

CCOE Central Check-Out Equipment

CERN European Organization for Nuclear Research

CsI Ceasium Iodide

DAQ Data Acquisition

EGSE Electrical Ground Support Equipment

FEE Front-End Electronics

FITS Flexible Image Transport System

GPS Global Positioning System

GRID Gamma Ray Imaging Detector

GSE Ground Support Equipment

HK HouseKeeping

LAN Local Area Network

MCAL Mini-Calorimeter

MGSE Mechanical Ground Support Equipment

ML Milions

NFS Network File System

PD Photo Diode

PDHU Payload Data Handling Unit

P/L Payload

RD Reference Document

SC Science Console

SCOE Specific Check-Out Equipment

ST Silicon Tracker

TC Telecommand

TE Test Equipment

TM Telemetry

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 4

All information contained in this document is property of INAF. All rights reserved.

Reference documents

[1] BSSC, “ESA software engineering standard”, ESA PSS-05-0 Issue 2, February 1991.

[2] “OMG Unified Modeling Language Specification”, Version 1.4, September 2001.

[3] ESA Packet telemetry standard

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 5

All information contained in this document is property of INAF. All rights reserved.

1. Design model

1.1 OVERVIEW

In this section are represented the UML class diagram for the ProcessorLib. For more details see
[5].

The next picture shows the main class diagram of the library. In this diagram the main classes are
represented:

 Processor: this class represent a single processor with all its functionality, as described in the
next chapters

 Provider: a processor can receive the telemetry flow of data coming from a single provider. The
selection of the provider can be performed by means of a configuration files (.processor)

 Monitor: this class represent an interface useful for the communication with a monitor. A monitor
could be a software that shows some information about the processor

 OutputFileProcess is the class that represent the output format of the processor. The output
could be a FITS file.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 6

All information contained in this document is property of INAF. All rights reserved.

1.2 MONITOR HIERACHY

Figure 1: overview of ProcessorLib

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 7

All information contained in this document is property of INAF. All rights reserved.

Two types of Monitor are provided; the MonitorDISCOS that interface the processor with the
DISCOS monitor, and a dummy monitor with no output. This hierarchy could be extended with other
monitors.

1.3 PROVIDER HIERACHY

Two type of provider are present; the ProviderDISCOS that use as input the DISCOS shared
memory, and the ProviderSingleInput. The last could be a single input file containing the telemetry
or a socket.

Figure 2: Monitor Hierarchy

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 8

All information contained in this document is property of INAF. All rights reserved.

1.4 OUTPUTFILEPROCESSOR HIERARCHY

At the moment only the FITS output type are present, but this hierarchy could be extended with new
type of outputs.

Figure 3: Provider Hierarchy

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 9

All information contained in this document is property of INAF. All rights reserved.

Figure 4: OutpuFileProcessor Hierarchy

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 10

All information contained in this document is property of INAF. All rights reserved.

2. Measurement and measurement session

2.1 MEASUREMENT SESSION

The main purpose of the processor software is to obtain and process the data produced by the
instruments under test.

Each measure starts with a start event (typically a start command) and end with a stop event
(typically a stop command) as determined by the configuration file (.processor). A single measure is
univocally identified with

 Runid

 Campaign

 Chain of acquisition (more generically, input type)

A set of measurements represent a measurement session. A measurement session does not need
a unique identifier, but corresponds with a unique campaign and test level.

In the next picture is showed the entire steps performed for a measurement session. The yellow
activities are performed by library; the red activities are performed by the particular processor
written by user of the library.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 11

All information contained in this document is property of INAF. All rights reserved.

2.2 MEASUREMENT

In the next picture is showed the entire steps performed during a measurement. The yellow
activities are performed by library; the red activities are performed by the particular processor
written by user of the library.

Figure 5: Measurement session

.

startMeasureme
nt

Create stream
structure for PacketLib

Connect to a source of
data

Get run_id

get data of system

Format filename of fits

close source of
data

Allocate memory for
the struct

session is
terminated?

Set counter = 0

Send information to
Monitor

Reads it from file
configuration (see
PacketLib file
configuration)

[no]

[yes]

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 12

All information contained in this document is property of INAF. All rights reserved.

Figure 6: Measurement

Read a buffer from
input data source

 / fine=false, first=true

Get prefix of
packet

Prefix is
present?

[yes]

Get packet

[no]

The measurement is
terminated?

Set value to
packet structure

[no]

Packet
recognized?

[no]

Set value from packet structure to
struct for writing to FITS

[yes]

Setting is
correct?

[no]

Init FITS file

first = true?

[yes]

[yes] / first=false

fits_flag = true?

[no]

Write data into
FITS

[yes]

Send information
to Monitor

[no]

Close the FITS
file

fisr=false?

[yes] / fine=true

[yes]

[no]

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 13

All information contained in this document is property of INAF. All rights reserved.

Figure 7: Init FITS file

Init the char*
value for FITS

Init the int value
for FITS

Send informtaion to
Monitor

firs_flag=true?

Init FITS file

[yes]

[no]

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 14

All information contained in this document is property of INAF. All rights reserved.

Figure 8: Close FITS file

Init the char* value
for FITS file

Init the int value
for FITS file

fits_flag=true?

Close FITS file

[yes]

[no]

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 15

All information contained in this document is property of INAF. All rights reserved.

3. How to work ProcessorLib

In the Figure 9 are described the main functionality of the library.

The class showed in the last chapter implement, on the whole, both the general purpose functions
included in all the processors (part A, in the next diagram of) and all the elements needed to
customize them (part B), given the particular instrument and data flow to be processed.

A single processor can work in this operational mode:
1. DISCoS mode: the processor is attached with DISCoS software and gets the data from it..

DISCoS mode has two sub-mode:
1.1. DISCoS online mode: the data source for DISCoS are obtained from an instrument or

a software generator.
1.2. DISCoS playback mode: DISCoS is used for providing data to processor, but this data

are obtained from the raw file archived by Archiver.
2. test mode: a processor can run without DISCoS. This mode is useful during the

development of a processor or when DISCoS is not finished (for parallel development within
a software team).

3.1 INPUT INTERFACE

The input of the system is an input of bytes. This flow is managed by a set of input interfaces able
to:

1) Connect to SHM DISCoS (in DISCoS mode)

Figure 9: ProcessorLib general schema

InputProcessor

SHM DISCoS ProviderDISCoS

ProviderSingleInput

Processor part A Processor part B

FITS 1

FITS 2

XML

...

Resender

File Socket

1

2

1

3

QL interface

Log book

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 16

All information contained in this document is property of INAF. All rights reserved.

2) Read the byte strema in input from File or Socket (in test mode)

The main purpose of these interfaces is to get from the byte input stream the necessary number of
bytes to recognize the TM packet. The reading operation are performed in the following way:

- About the DISCoS mode, a buffer of fixed dimension are read from the DISCoS
shared memory

- About the test mode, the TM packet header (of fixed dimension) is read. From this
header the dimension of the source packet is read and, after this, a number of byte of
the same dimension of the source packet is read.

The output of these input interfaces (see number 1 in the diagram) is a TM packet (see [6]).

3.2 PROVIDER

Provider reads the ESA source packet from driver and
a. filters the packet and send to processor only the ESA source packet recognized to

processor (event data packets, instrument configuration packets, measurement log
packets)

b. manages the run id of the measurement
c. manages the start and stop time of the measurement.

3.2.1.1 PACKET

The telemetry packet managed are the following:

 event data packet

 instrument configuration packet: with the configuration of a single measurement

 measurement log packet: the log of a measurement

 start telecommand

 stop telecommand

A measurement starts with the start TC and terminates with the stop TC. A measurement session is
a collection of measurements. This means that in the input byte streamt there are measurement
with start and stop TC.

In test mode it is possible to configure the processor to ignore the start and stop TC. In this way the
input data flow becomes a single measurement.

3.2.2 Run id

Each measurement is characterized with its run ID. When a new measurement starts the run ID is
incremented in the following way:

1) DISCoS mode: when a new start TC is read
2) Test mode: when a new start TC is read, but with three operational mode:

a. The run ID of the first measurement is zero;
b. The run ID of the first measurement is read from a configuration file, as specified in

the .processor;

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 17

All information contained in this document is property of INAF. All rights reserved.

c. The run ID of the first measurement is determined from the name of the input file.
This operational mode is useful with the raw file generated by DISCOS system in
DISCoS playback mode.

In test mode it is possible to ignore the start/stop TC sequence. In this case the first run ID will be
the unique run ID of the current session (but in the case b) the run ID of the following session is
incremented).

3.2.3 Start time and stop time

For each measurement it is necessary to know the start and stop time of the measurement. This
times are determined in the following way:

1) DISCoS mode:
a. In playback mode the date and time are read from DISCoS logs
b. In other cases the time are determined by DISCoS system

2) Test mode:
a. Date and time are read by the system
b. The date and time are read from DISCoS logs, when the input files are raw files

generated by DISCoS system.

3.2.4 Output

The Provider output (see number 2 in the preceding diagram) is represent by the following TM
packet:

 Event data

 Instrument configuration

 Measurement log

3.3 PROCESSOR

A Processor accept, as input, the TM packet coming from Provider, elaborates it and generates one
or more output files for each measurement.

The output files could be in every file format (FITS, XML, text). In the following examples there are
the following cases:

 A Processor that generates a FITS file with the events

 A Processor that generates two output files: event file and histogram file with the event

accumulation.

In Figure 9 the processor is divided in two parts:

 Part A: this is the general purpose part, and this part manages

1) The logic of measurement session (see Figure 5)

2) The logic of a measurement (vedi Figure 6, Figure 7 e Figure 8)

3) The reading of the TM packets coming from Provider

4) Sending the input TM packet to many output destinations (not yet implemented)

5) The interfacing with the QL

6) The interfacing with the log book (not yet implemented)

 Part B: this is the more specialized part, and this part manages :

1) The elaboration of data container into the TM packets

2) The opening, closing and writing of the output files.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 18

All information contained in this document is property of INAF. All rights reserved.

The part B should be written by users of the ProcessorLib.

For a processor working in test mode it is also possibile, if the check of start/stop TCs is enabled,
the generation of a FITS file containing all the events sent between a stop and a start TC.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 19

All information contained in this document is property of INAF. All rights reserved.

4. Building a processor

The realization of a processor means that it is necessary to create a C++ project and two libraries
have to be linked:

1) PacketLib;
2) ProcessorLib

Two class must be realized:
1) A derived class of the Processor class that implements all the pure virtual methods
2) A derived class of the OutputFileProcessor class, one for each output file that implements all

the pure virtual methods
3) The main(), with the calls for the instantiation of the processor (see below).
4) The writing of the configuration files:

a. .processor, with all the parameter for the run-time working of the processor
b. .stream that describes the byte input stream
c. one .packet, for each TM packet that contains the description of the telemetry packet

See [6] for 4.a and 4.b.

4.1 .PROCESSOR

4.1.1 DISCoS Mode

[Processor]

-- Configuration file for PacketLib

CAL-CSIBarsTE_DISCOS.stream

-- output file flag

true

-- campaign ID

cer

-- test_level

0

-- packet ID with event data

1

-- packet ID of start telecommand

none

-- packet ID of stop telecommand

none

-- packet ID instrument configuration

none

-- packet ID measurement log

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 20

All information contained in this document is property of INAF. All rights reserved.

none

-- extra parameters ----------------------------

[Provider]

-- 0 DISCOS, 1 SingleInput

0

-- acquisition type (chain) 0 = ACQ_OLD (playback mode)

0

-- direcotory with log file (N.A. for DISCOS)

/home/archive/log/

-- only for playback mode (acq_type=ACQ_OLD) acq_type of current playback

mode

hbrs

-- extra parameters ----------------------------

[InputProvider]

-- channel of shared memory for event data

18

-- channel of shared memory for instrument configuration

none

-- channel of shared memory for instrument measurement log

none

[OperationalMode]

-- 0: ignore start/stop telecommand

-- 1: start measurement with start TC, stop measur. with stop TC or EOI

0

-- 1: write output data between a stop and a start

-- 0: don't write output

0

[Monitor]

-- 0 Dummy, 1 DISCOS

1

-- extra parameters ----------------------------

-- channel

28

[FITS key]

--key 1

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 21

All information contained in this document is property of INAF. All rights reserved.

TELESCOP

Agile

--key 2

INSTRUME

Grid

--key 3

MODEL

October 2001

--key 4

DETNAM

MCAL

--key 5

HOSTCOMP

TESRE T.E.

--key 6

DATATYPE

Diagnostic

4.1.2 Test mode

[Processor]

-- Configuration file for PacketLib

CAL-CSIBarsTE_File.stream

-- output file flag

true

-- campaign ID

cer

-- test_level

FEE

-- packet ID

1

-- packet ID of start telecommand

none

-- packet ID of stop telecommand

none

-- packet ID instrument configuration

none

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 22

All information contained in this document is property of INAF. All rights reserved.

-- packet ID measurement log

none

-- extra parameters ----------------------------

[Provider]

-- 0 DISCOS, 1 SingleInput

1

-- acquisition type (chain) 0 = ACQ_OLD (playback mode)

0

-- direcotory with log file (N.A. for DISCOS)

/home/archive/log/

-- only for playback mode (acq_type=ACQ_OLD), acq_type of current

playback mode

hbrs

-- extra parameters ----------------------------

-- directory for writing FITS file

fits/

[InputProvider]

-- This section is only for SingleInput

-- mode for the determination of run id 0: start from 0, 1: read the run

id from a file

-- 2: for playback mode, read from filename

1

-- file name that contains run id

runid.run

-- reading of start and stop time of measurement 0: system date and time

1: first packet in input

-- and last packet in input 2: start/stop packet 3: DISCoS log file (N.I)

0

-- file name in input

/data1/archive/raw/science/0506/cer05060_011018.hrt

[OperationalMode]

-- 0: ignore start/stop telecommand

-- 1: start measurement with start TC, stop measur. with stop TC or EOI

0

-- 1: write output data between a stop and a start

-- 0: don't write output

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 23

All information contained in this document is property of INAF. All rights reserved.

0

[Monitor]

-- 0 Dummy, 1 DISCOS

0

-- extra parameters ----------------------------

-- channel

28

[FITS key]

--key 1

TELESCOP

Agile

--key 2

INSTRUME

Grid

--key 3

MODEL

October 2001

--key 4

DETNAM

MCAL

--key 5

HOSTCOMP

TESRE T.E.

--key 6

DATATYPE

Diagnostic

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 24

All information contained in this document is property of INAF. All rights reserved.

5. An example of processor

5.1 GRIDCALDFETE PROCESSOR

5.2 MAIN

The library supports the management of exceptions. This means that the block of code for
generation of the processor must be in a try-catch block.
 try

First of all it is necessary to instantiates the processor:
 GRIDCALDFETEProcessor* gp = (GRIDCALDFETEProcessor*) new GRIDCALDFETEProcessor();

 The second step is to load the configuration file:
 gp->loadConfiguration("./CAL-DFE-TE/CAL-DFE-TE_File.processor");

 After this, the measurement session should be started:
 gp->startMeasurementSession();

 At the end, the catch should be managed in the following way:
 catch(PacketExceptionIO* e)

 {

 cout << e->geterror();

 }

 catch(PacketException* e)

 {

Figure 10: Class diagram of a processor

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-012 Issue: 0.1 DATE 31-MAR-14 Page: 25

All information contained in this document is property of INAF. All rights reserved.

 cout << e->geterror();

 }

 Di seguito è riportato il listato completo:
/***

 main.cpp - description

 begin : Fri Mar 8 11:43:52 CET 2002

 copyright : (C) 2002 by Andrea Bulgarelli

 email : bulgarelli@tesre.bo.cnr.it

 ***/

/***

 * *

 * This program is free software; you can redistribute it and/or modify *

 * it under the terms of the GNU General Public License as published by *

 * the Free Software Foundation; either version 2 of the License, or *

 * (at your option) any later version. *

 * *

 ***/

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <iostream.h>

#include <stdlib.h>

#include "ProviderDISCOS.h"

#include "ProviderSingleInput.h"

#include "GRIDCALDFETEProcessor.h"

#include "common.h"

#include "MonitorDummy.h"

#include "PacketExceptionIO.h"

int main(int argc, char *argv[])

{

 try

 {

 struct tm* tm_int;

 time_t timevar1;

 time_t timevar2;

 time(&timevar1);

 GRIDCALDFETEProcessor* gp = (GRIDCALDFETEProcessor*) new GRIDCALDFETEProcessor();

 gp->loadConfiguration("./CAL-DFE-TE/CAL-DFE-TE_File.processor");

 gp->startMeasurementSession();

 time(&timevar2);

 cout << "Time: " << timevar2-timevar1 << endl;

 cout << "Media: " << gp->getTot_nrows() / ((timevar2-timevar1)?(timevar2-timevar1):1) <<

endl;

 return 0;

 }

 catch(PacketExceptionIO* e)

 {

 cout << e->geterror();

 }

 catch(PacketException* e)

 {

 cout << e->geterror();

 }

}

