
CIWS CIWS – Customizable Instrument Workstation Software system
for telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: i

All information contained in this document is property of INAF. All rights reserved.

ProcessorLib Tutorial:

how to implement a simple processor task using
the ProcessorLib

 Internal Report IASF Bologna n 613/2012

Prepared by: Name: V. Conforti
A. Bulgarelli

M. Trifoglio

F. Gianotti

Signature: Date: 10/09/2012

Reviewed by: Name: A. Bulgarelli Signature: Date:

Apprroved by: Name: M. Trifoglio Signature: Date:

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: ii

All information contained in this document is property of INAF. All rights reserved.

DISTRIBUTION LIST

CIWS e-mail list ciws@iasfbo.inaf.it

CIWS Customizable Instrument Workstation Software (CIWS) for
telescope-independent L0/L1 data handling

Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: iii

All information contained in this document is property of INAF. All rights reserved.

DOCUMENT HISTORY

Version Date Modification

1.0 10 September 2012 First version

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 1

All information contained in this document is property of INAF. All rights reserved.

TABLE OF CONTENTS

1. INTRODUCTION ... 2

2. DEVELOPMENT ENVIRONMENT .. 3

3. PROCESSOR ARCHITECTURE .. 4

3.1 TELEMETRY STRUCTURE CONFIGURATION FILES .. 5
3.2 PROCESSOR INFORMATION ... 5
3.3 FITS STRUCTURE DEFINITION ... 6

4. PROCESSOR IMPLEMENTATION .. 7

4.1 THE SKELETON .. 7
4.2 THE CODE .. 7

4.2.1 Tutorial_Processor.h .. 7
4.2.2 Tutorial_Processor.cpp .. 8

4.2.2.1 The constructor: .. 8
4.2.2.2 Load Configuration ... 9
4.2.2.3 Create Memory Structure ... 9
4.2.2.4 Set Value .. 9
4.2.2.5 Other methods .. 10

4.2.3 Tutorial_FITS.h .. 10
4.2.4 Tutorial_FITS.cpp .. 11

4.2.4.1 Constructor ... 11
4.2.4.2 Distructor .. 11
4.2.4.3 Init ... 11
4.2.4.4 Close .. 12
4.2.4.5 Write Data ... 12

5. COMPILE AND EXECUTE A PROCESSOR .. 15

6. EXECUTION OPTION ... 16

REFERENCE DOCUMENTS .. 17

REFERENCE SITES ... 17

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 2

All information contained in this document is property of INAF. All rights reserved.

1. Introduction

Data Management in Astrophysics needs particularly attention in terms of time and space. The
amount of data to be acquired from the instrument (both space-borne and ground-base) can be very
high and the data acquisition system must be fast as much as the bit rate.

In this document, the raw data collected from the instruments are named telemetry or L0 data, and
are in binary format. Each experiment adopts for the telemetry a specific layout, which usually
foresees a header followed by the instrument data block. The header contains the information that
identifies the structure of instrument data block.

The binary format is very good for data transmission, but it is not suitable for human being. A
standard scientific format data (not only for image) very used in Astronomy is the FITS (Flexible
Image Transport System). Usually the instrument raw data have to be transformed into FITS format.
In this document they are named L1.

This tutorial shows how to implement the task (processor) that performs the transformation of the
data from L0 to L1.

This transformation is done using specific libraries: PacketLib, ProcessorLib and CFITSIO:

 CFITSIO is a C++ library, developed from NASA, that help to create and write a file fits.

 PacketLib is an IASFBO library that allows a good management of L0 data.

 ProcessorLib offers all method to transform L0 data in L1 and uses CFITSIO and PacketLib.

The input to a processor may be a telemetry file or a socket connection or a DISCOS connection
(ready to receive telemetry packets).

The processor implementation is obtained by overriding some ProcessorLib methods, as explained
in this guide.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 3

All information contained in this document is property of INAF. All rights reserved.

2. Development Environment

We assume the following development environment:

 Operating System: Linux Cent OS 64 bit;

 Editor: Eclipse CDT (C/C++ Development Tool);

 Libraries: PacketLib, ProcessorLib, CFITSIO;

 Repository/Versioning: GIT / SVN

Environment variables:

 TBD

A virtual machine has been set-up with the above environment and can be imported using Oracle
Virtual Box.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 4

All information contained in this document is property of INAF. All rights reserved.

3. Processor Architecture

In the left part of above figure there are accepted kinds of input. On the right there is the output
which is a FITS file with one or more HDU (Header Data Units). The PROCESSOR uses the
PacketLib to read and unpack the L0 data packets, and the CFITSIO library to write the FITS
output file.

The lifecycle of the processor is reported in the following sequence diagram:

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 5

All information contained in this document is property of INAF. All rights reserved.

The program starts loading the processor configuration, and allocates the memory needed to
speedily manage the data packets and create the FITS file. For each input packet the processor
reads the packet header, the data field header, fields and blocks (if present), then writes them in
the FITS file. When packets are finished the FITS file is closed and program ends.

It is necessary to write one processor for any kind of telemetry packet foreseen for the given
experiment.

Each processor must be carefully designed for a particular kind of packet, similarly must be defined
the structure of the FITS file.

For this reason a processor needs:

 telemetry structure configuration files (which describe the telemetry),

 a processor information file (with description of processor),

 and the definition of the FITS file.

All this files, by convention, must be inserted in a conf (configuration) folder inside the project folder.

3.1 Telemetry Structure configuration files

The telemetry is defined by 3 kinds of files:

1. One .header file;

2. One .stream file;

3. One or more .packet files;

The *.stream file represents the telemetry flow. It contains the information on the endianity of the
data and the reference to the header section and the packets section.

If there is only one kind of packet, there will be only one .packet file, otherwise it must be created
one .packet file for each kind of packet.

In the header file there are some fields which describe the telemetry packets such as the version
number, the APID (Application Process ID), the packet length and the source sequence counter
(counter of packets).

The .packet file describes all fields of each packet. The packet has always two sections: the data
field header, and the source data field. Some fields are required to describe the type of packet and
how the information is contained in the packet.

Detailed information on the packet structure design is given in [RD1] document.

3.2 Processor Information

The processor information must be inserted in a Tutorial_Processor file.

Some of information are mandatory and common to all the processors, others are specific to the
given processor.

E.g. it contains the reference to .stream file that describes the telemetry (mandatory) and other
information to be included in the HDU1 of the FITS file.

It can be used to pass to the processor specific information to pass to processor.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 6

All information contained in this document is property of INAF. All rights reserved.

Further information are given in [RD4].

3.3 FITS structure Definition

The FITS structure must be defined in your processor code. The FITS file could have one or more
HDU (Header Data Units). The first HDU is called "Primary HDU" and will be created automatically
with the information inserted in .processor file.

The others HDU are called addition HDU and are FITS extensions. The standard extension types
are:

 Image Extension: n-dimensional array of pixels;

 ASCII Table Extension: store tabular information in ASCII format;

 BINARY Table Extension: store tabular information in binary format.

You must define the number of table column, and for each column you must define:

 The column name;

 The data type;

 The measurement unit;

Each of this definition must be inserted in array structure as required by the CFITSIO library.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 7

All information contained in this document is property of INAF. All rights reserved.

4. Processor Implementation

4.1 The Skeleton

A processor requires many files. At moment no tool is available to help the developer to prepare
these files.

Waiting for these tool, a complete set of these files are given in Annex as templates to be manually
customized for the specific case.

The skeleton of the application is composed as follows:

 conf/
o Tutorial.packets (one or more) ;
o Tutorial .stream (one);
o Tutorial .header (one);
o Tutorial .processor (one or more)

 include/
o Tutorial_FITS.h;
o Tutorial_Processor.h;

 src/
o Tutorial_FITS.cpp;
o Tutorial_Processor.cpp;
o main.cpp.

In this example is used Tutorial as name of project. Same structure can be used for any project
changing the name of project.

It's recommended the use of a Makefile (you can use and edit an existing processor makefile) and
the Doxyfile in order to create automatically the code documentation.

4.2 The Code

The following sub-paragraphs explains the essential part of the code of each file composing the
processor application.

4.2.1 Tutorial_Processor.h

The processor can take data input from a file or from a socket, so may be that the packets arrive
asynchronously. Then the process and the insert step in FITS file is done packet by packet.

The processor must allocate data structure well defined in memory in order to accept one packet.
Each packet uses the same memory so it's sufficient allocate the memory for the biggest packet.

First, it must be created a struct that define the data structure needed.

For example:

typedef struct

{

 float header[5];

 int fields[10];

} PACKET;

In this case, the structure can accept packets which have 5 fields of float values and 10 fields of
integer values.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 8

All information contained in this document is property of INAF. All rights reserved.

It possible to create complex structures as required by the specific telemetry packet.

Then, it must be defined the specific processor class. One simple example is:

class Tutorial_Processor : public Processor

{

 public:

 Tutorial_Processor();

 bool loadConfiguration(int argc, char** argv) throw(PacketException*);

 virtual char* processorVersion() { return "1.0.0 (not ufficial version)"; };

 virtual char* processorAuthor() { return "Vito Conforti"; };

 char* processorDescriptor() { return "IASF Bologna Telemetry-Simulated-Processor";};

 char* processorID() { return "Learning_ImplementationTutorial_Processor"; };

 protected:

 virtual void createMemoryStructure();

 virtual bool setValue();

 virtual char** initCharValueForOutput_init();

 virtual int* initIntValueForOutput_init();

 virtual char** initCharValueForOutput_close();

 virtual int* initIntValueForOutput_close();

 private:

 int apid;

};

This code is required to implement the Processor Class. All the above defined methods must be
implemented. Other methods or other private member can be added as needed.

4.2.2 Tutorial_Processor.cpp

In this file you must include Tutorial_FITS.h and implement all methods declared in C++ .h file:

4.2.2.1 The constructor:

Tutorial_Processor::_Processor()

{

 addOutputFileProcessor(new Tutorial_FITS());

 apid = 1292;

}

This code is required to create an instance of the Tutorial_FITS object.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 9

All information contained in this document is property of INAF. All rights reserved.

4.2.2.2 Load Configuration

The loadConfiguration method is called when program starts. It sets the configuration using the run
string parameters. In normal situation, this method is implemented using the same method of the
Processor super class:

bool Tutorial_Processor::loadConfiguration(int argc, char** argv) throw(PacketException*)

{

 bool ret = Processor::loadConfiguration(argc, argv);

 return ret;

}

4.2.2.3 Create Memory Structure

The createMemoryStructure method allocates the memory required to host a single packet of
maximum size:

void Tutorial_Processor::createMemoryStructure(){

 PACKET* packet = (PACKET*) new PACKET;

 arrayDataOutput = (void*) packet;

}

The link between the processor object and fits object is the arrayDataOutput. It's a variable of the
ProcessorLib and it must be filled with the pointer to the memory just allocated.

4.2.2.4 Set Value

The setValue method is called by the ProcessorLib for each packet.

The packet data are taken from the ProcessorLib protected variable named “p”.

The data are stored in the memory structure allocated above.

Each packet field is read using the PacketLib.

Here is reported a simple example:

bool Tutorial_Processor::setValue(){

 int nrow = 1;

 PACKET* packet = (PACKET*) arrayDataOutput;

 apid=(p->header->getFields(3))->value; // take apid of current packet

 packet->header[0] = (int) p->dataField->dataFieldHeader->getFieldValue(2);

 packet->header[1] = (float) p->dataField->dataFieldHeader->getFieldValue_5_1(3);

 packet->header[2] = (float) p->dataField->dataFieldHeader->getFieldValue_5_1(5);

 packet->header[3] = (float) p->dataField->dataFieldHeader->getFieldValue_5_1(7);

 ...

 nrowsFITS = nrow;

 return true;

}

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 10

All information contained in this document is property of INAF. All rights reserved.

It is noted that all fields of the structure must be filled respecting the data type of the structure. To
this purpose it can be used the cast operator. The nrowsFITS variable must be set to the number of
row that needed in the FITS file in order to write the data contained in the packet structure.

This is a simple example which needs only one row. Packet with complex layouts (e.g. data fields
with more than one block) could need more than one row (e.g. one raw for each block).

4.2.2.5 Other methods

In a simple application the following methods can be left empty (return NULL) :

initCharValueForOutput_init

initIntValueForOutput_init

initCharValueForOutput_close

initIntValueForOutput_close

The above methods pass specific data (integer or character array) to the init or close method of the
FITS object.

4.2.3 Tutorial_FITS.h

The FITS class is responsible for writing the FITS file. The Tutorial_FITS.h file contains the
declarations of the methods to be overridden and the members of the FITSBinaryTable (super
class).

A simple example is:

class Tutorial_FITS : public FITSBinaryTable

{

 public:

 Tutorial_FITS(); /// constructor

 ~ Tutorial_FITS(); /// distructor

 virtual bool init(char**c, int*i, char* filenameconfig = 0) throw (PacketException*);

 virtual bool close(char**c, int* i);

 virtual bool writeData(void* data, dword nrows);

 private:

 // fits packet structure

 char **ttype;

 char **tform;

 char **tunit;

 int tfields;

};

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 11

All information contained in this document is property of INAF. All rights reserved.

The init method is called when the program starts. It creates the FITS file and the FITS tables. The
close method closes the FITS file. The writeData method is called for each packet in order to write
the data in the FITS file. The private member are used as pointers in order to use them in all
methods.

4.2.4 Tutorial_FITS.cpp

In this file there is the implementation of all method of the FITS class:

4.2.4.1 Constructor

Tutorial_FITS:: Tutorial_FITS(){

 tfields=2; // number of column

 ttype = new char* [tfields+1];

 ttype[0] = "first field";

 ttype[1] = "second field";

 tform = new char* [tfields+1];

 tform[0] = "1I"; // signed 16 bit integer

 tform[1] = "1E"; // 32 bit floating point

 tunit = new char* [tfields+1];

 tunit[0] = "Tev";

 tunit[1] = "Tev";

}

The above example is for a binary table with 2 columns. For each column are defined the ttype
(name of field) , tform (type of field) and tunit (unit of measure) values.

The possible tform values are reported in the CFITSIO documentation.

4.2.4.2 Distructor

It simply frees all the allocated memory:

Tutorial_FITS::~ Tutorial_FITS(){

 delete[] tform;

 delete[] ttype;

 delete[] tunit;

}

4.2.4.3 Init

The init method executes preliminary operation in order to write the FITS file:

 bool Tutorial_FITS::init(char**c, int*i, char* filenameconfig) throw (PacketException*){

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 12

All information contained in this document is property of INAF. All rights reserved.

 int status = 0;

 long nrows = 0; /* total number of rows to be updated - initial number of row */

 /* extension name - is the name for the table */

 char extname[] = " _Binary_packet";

 // initialization of row

 currentrow = 1;

 char* filename = getFileName();

 /* create new FITS file */

 if (fits_create_file(fptr, filename, &status))

 printerror(status);/* call printerror if error occurs */

 /* create HDU - 2 -> table of data field of packets*/

 if (fits_create_tbl(*fptr, BINARY_TBL, nrows, tfields, ttype, tform,

 tunit, extname, &status))

 printerror(status);

 return status;

 }

In this simple example, there are some initialization for the name of table and the number of first row
to be written.

The methods to create FITS file and table are in the CFITSIO library. Details of single function can
be read in CFITSIO documentation. It should be careful that many parameter in the CFITSIO
function accept only array data format.

4.2.4.4 Close

This function simply closes the FITS file:

if (fits_close_file(*fptr, &status))

 printerror(status);

4.2.4.5 Write Data

The writeData method reads data of the current packet stored in the shared memory, then writes

them in FITS file:

bool Tutorial_FITS::writeData(void* data, dword nrows){

 int status = 0;

 int arrayColumn[12];

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 13

All information contained in this document is property of INAF. All rights reserved.

 float arrayColumnf[12];

 PACKET* currentPacket = (PACKET*) data;

 int nblock = nrows; /* number of rows*/

 long firstelem = 1 /* first element in row (ignored in ASCII tables) */

 long firstrow = 1; /* first row to write*/

 int nelements = 2; /* number of elements*/

 long numrighe = 1; /* number of rows*/

 // read data of packet from shared memory

 arrayColumn[0] = (int) currentPacket->header[0];

 arrayColumnf[1] = (float) currentPacket->header[1];

 // set current HDU to write

 if (fits_movabs_hdu(*fptr, 2, 0, &status))

 printerror(status);

 //write first column data

 if(fits_write_col(*fptr,TSHORT,1,currentrow,firstelem,(long)numrighe,&arrayColumn[0],
&status))

 printerror(status);

 // write second column data

 if (fits_write_col(*fptr, TFLOAT, 2 , currentrow, firstelem,(long) numrighe ,
&arrayColumnf[1], &status))

 printerror(status);

 }

 /* update the currentrow index for the next time this routine will be called */

 currentrow = currentrow + 1;

 return status;

 }

In this simple example is shown how the data of shared memory are written in FITS file. It is good
practice to select the current HDU before writing. The function that selectd the HDU is
fits_movabs_hdu [RS3].

The method to write in fits file is fits_write_col. This method write a column in the table so the value
to be written must be in array format. In this example it is passed an array of size 1. In order to write

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 14

All information contained in this document is property of INAF. All rights reserved.

one row it must call the fits_write_col for each field of the table. The details of this function are
written in [RS1].

The variable currentrow is a private member of Tutorial_FITS class. It allow to keep tracks of the
current row to be written.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 15

All information contained in this document is property of INAF. All rights reserved.

5. Compile and execute a processor

The processor created must be compiled with 32 bit for compatibility reason with other libraries.

make CFLAGS="-m32"

It can add this option in Makefile.

Is recommended the uso of an existing processor Makefile because already has the link to required
library.

The use of an existing Makefile can required some modifies. For example the name of executable
file, enabling/disabling of DISCOS. If it does not use DISCOS it must be disabled otherwise will be a
an error in compile time.

 Finally must be set some environment variable. The GTB group of IASF - Bologna has a file and
instruction to import a profile file with all correct configurations.

The command to execute a processor is

./name_exe nameTutorial_Processor

The name_exe is the name of executable file, the nameTutorial_Processor is the name of

processor. It can be added other parameter reported in the next chapter.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 16

All information contained in this document is property of INAF. All rights reserved.

6. Execution Option

When the user lunch the program can set the following optional parameters:

 -h --help Display this usage information.

 -o --msgout Shows the console messages during acquisition.

The following parameters override the same parameters contained in the .processor configuration
file:

 -m --model Instrument model under test (e.g. SEM, PFM).

 -t --testlevel Test level of the acquisition.

 -T --testequipment Test equipment connected with SC.

 -c --campaign Campaign of the acquisition (e.g. cnr, lab, cern).

 -a --acquisition Acquisition type (0 PLAYBACK, 3 HBR_SCOE).

 -p --period Period of the campaign.

 -s --source Filename for file as input, port for socket as input,channel for DISCoS system.

 -d --destination Only for single input: destination directory of the fits file (with end /)

 -f --filenamever Specify the file name version. If 1, add date and time to the file name.

 -r --crcdisable Disable the verification of the CRC.

 -C --calibrationlog Enable calibration log flag.

 -l --close Specify the max number of packets for each file.

CIWS
Customizable Instrument Workstation Software (CIWS) for

telescope-independent L0/L1 data handling

 Code: CIWS-IASFBO-TN-003 Issue: 1.0 DATE 10-SEP-12 Page: 17

All information contained in this document is property of INAF. All rights reserved.

Reference documents

RD [1] PacketLib 1.3.2 Interface Control Document - A. Bulgarelli, F. Gianotti, M. Trifoglio -
February 2005.

RD [2] PacketLib 1.3.6 Programmer's Guide A. Bulgarelli, F. Gianotti, M. Trifoglio - July 2005.

RD [3] ProcessorLib 1.2.2 Detailed Design Report - A. Bulgarelli, F. Gianotti, M. Trifoglio -
May 2003.

RD [4] ProcessorLib 1.2.2 Programmers Guide - A. Bulgarelli, F. Gianotti, M. Trifoglio - May
2003.

RD [5] CFITSIO User's reference Guide - An Interface to FITS Format Files for C
Programmers - HEASARC - April 2012.

RD [6] AGILE Science Console Design Concept - A. Bulgarelli, F. Gianotti, M. Trifoglio -
November 2003.

RD [7] AGILE Science Console and Preprocessing Software Requirement Document - A.
Bulgarelli, F. Gianotti, M. Trifoglio - November 2003.

Reference sites

RS [1] CFITSIO: http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html

RS [2] FITS : http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

RS [3] http://www.aip.de/~weber/doc/fitsio/cfitsiohtml/node63.html

